
An Adaptive Representation of RFID Data Sets
Based on Movement Graph Model

M. P. Ravikanth, A. K. Rout
CSE Department, GMR Institute of Technology, JNTU Kakinada, Rajam

Abstract— Radio Frequency Identification (RFID) data sets
are expected to become commonplace in supply chain
management systems. This model tells about movement graph
model as a compact representation of RFID data sets. Since
the information of item is associated with the objects as well as
spatiotemporal. The movement graph can be huge, complex,
and multidimensional in nature. RFID used for identifying,
locating, tracking and monitoring physical objects. To achieve
these goals RFID data have to be collected, filtered and
transformed into semantic application data. Such data cannot
be used directly by applications unless they are filtered and
cleaned.
The Movement graph can be effectively organized by the
gateway nodes, which serve as bridges for connecting different
regions of the graph. We propose an efficient cubing algorithm
that performs simultaneous aggregation of both
spatiotemporal and item dimension on a partitioned
movement graph. Main goal of this research project is to
design and develop an efficient, RFID processing system that
enables real-time tracking monitoring.

Keywords— RFID, data warehousing, data models

I. INTRODUCTION
 RFID (Radio Frequency Identification) is a non-contact
automatic identification technology, which aims at
identifying and tracking items by using radio frequency
electromagnetic wave to let readers capture the data on
RF tags attached to them.
 However, unreliable data (original data) captured by
readers is a major factor hindering the development of
RFID technology. Under normal circumstances, it is quite
often that the loss and error rate is between 30-40 %.
 For effectively and efficiently supporting high-level RFID
business logic processing, it is necessary to provide high-
quality RFID data. For that case, it is critical to clean
the original data.
 One major problem to be solved in pervasive computing
is to identify and track physical objects, and RFID
technology is a perfect fit to solve this. By tagging objects
with EPC 1 tags that virtually represent these objects, the
identifications and behaviours of objects can be precisely
observed and tracked.RFID readers can be deployed at
different locations and networked together, which provides
an RFID-based pervasive computing environment.

The filtered RFID data often need to preserve the
original order, i.e., the first observed tagged object will be
output first after filtering. Such order can be critical for
many RFID applications.

II. RADIO FREQUENCY IDENTIFICATION (RFID)

 Technology that allows a sensor (reader) to read, from
a distance, and without line of sight, a unique electronic
product code (EPC) associated with a tag.

Fig. 1 Radio Frequency Identification

III. RFID FRAMEWORK ARCHITECTURE
It is one of the first RFID integration platforms focusing on
large-scale deployments. Its service-oriented architecture
provides network services to applications through several
standard protocols and interfaces. Java System RFID
Software consists of two major components: The
event manager processes (filters and aggregates) RFID
data, while the information server provides access to
the business events generated by the event manager and
serves as an integration layer that offers options for
integrating with enterprise applications.

Fig. 2 RFID Frame Work Architecture

It is one of the first RFID integration platforms focusing

on large-scale deployments. Its service-oriented architecture
provides network services to applications through several
standard protocols and interfaces. Java System RFID
Software consists of two major components: The event
manager processes (filters and aggregates) RFID data,
while the information server provides access to the business
events generated by the event manager and serves as
integration layer that offers options for integrating with
enterprise applications.

 M. P. Ravikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4205-4209

4205

IV. PROBLEM DEFINITION
In order to realize the full benefits of detailed object

tracking information, we need to develop a compact and
efficient RFID cube model that provides OLAP-style
operators useful to navigate through the movement data at
different levels of abstraction of both spatiotemporal and
item information dimensions.

This is a challenging problem that cannot be efficiently
solved by traditional data cube operators, as RFID data sets
require the aggregation of high-dimensional graphs
representing object movements, not just that of entries in a
flat fact table.

V. PROPOSAL STATEMENT

In paper will be developed on effective and efficient
RFID data filtering techniques to generate clean RFID data,
which can be further interpreted and integrated into RFID-
based applications.

In this paper, two types of filtering is proposed: noise is
removed from RFID data (de-noising or smoothing), and
duplicates are merged into one distinct reading (duplicate
elimination, or merging).

VI. APPROACH/METHODS

The work proposed here to model the RFID data
warehouse using a movement graph-centric view, which
makes the warehouse conceptually clear, better organized,
and obtaining significantly deeper compression and
performance gain over competing model in the processing
of path queries.

The path databases used for performance evaluation were
generated using a synthetic path generator. Locations inside
a partition are arranged according to a producer
configuration, where we simulate factories connecting to
intermediate locations that aggregate traffic, which in turn
connect to Out-gateways; or a consumer configuration,
where we simulate products moving from In-gateways, to
intermediate locations such as distribution centers, and
finally to stores.

Generate paths by simulating groups of items moving
inside a partition, or between partitions, and going usually
through gateways, but sometimes, also “jumping” directly
between non-gateway nodes.
Construction of a RFID cube by Applying Following
Techniques.

 1. Movement Graph Aggregation.
 2. Generate RFID Cuboids.
 3. Cube Computation.

VII. MOVEMENT GRAPH PARTITIONING
Gateway Identification:

a. First Procedure
Based on the paths, we construct a movement graph,

which are partitioned along gateway nodes Generally ,in
supply chain management data analysts provides the
complete list of gateways.

b. Second Procedure
Find the edge, if that edge is removed from the graph

then the graph splits into two disconnected components.

c. Third Procedure
 Based on the large traffic flow through nodes and they

can also be identified by using a concept of betweens and
centrality in social network analysis.

Algorithm been used to find the Gateway node is Depth
First Search (Backtracking is possible).

ALGORTHIM TO CREATE A GRAPH

Step: 1 begin
Step :2 Read no of locations
Step :3 Read the adjacency among locations (0 or 1) in

an array x[i][j] .
Step :4 Initially all locations are un-visited i.e
visited[I]<-

 False.
 Step:5 print x[i][j].

ALGORITHM TO CREATE DFS EXCLUDING
MISSING NODE

Step:1 Begin.
Step:2 call function dfs(curv,missv) where initially

curv<-i ,missv<-i.
Step:3 find whether the node is visited or not , if the
node is not visited then perform visited[curv]=true.

Step:4 Intialize k<-0 increment k by 1 until k <n(no of
 locations).
Step:5 Verify the condition such that if(k!<-missv &&

 k!<-curv && x[curv][k]<-1 && !visited[k])
 visited[k]<-true.Now invoke recursive function
 dfs(k,missv) if the condition fails goto step3.

 Step:6 Now goto step2 and continue the process.
 Step:7 Stop

ALGORITHM TO FIND GATEWAYS

 Step: 1 Begin.
 Step: 2 Initialize i<-0,j<-0 where visited[j]=false.
 Step: 3 Initialize curv<-I,missv<-I
 Step: 4 Generate Randomly a no to visit the intial

location
 Now ,find if(missv!=curv)
 break;//comes out of loop.

 Step: 4.1 Call fun dfs(curv,missv)
 Initialize j<-0 ,j<-j+1,until j<n;
 check whether if(j!=missv && !visited[j])
 //if condition is true break.

 Step: 5 Check if(j!=n)//if condition is true add gateway
to the vector.

VIII. RFID DATA GENERATION

Raw RFID data consists of a set of triples (TagID, Loc,
Time), where TagID is the Electronic Product Code (EPC)
of the tag and is used for identifying the tag uniquely.Loc is
the location of the RFID reader which detects the tag.Time
is the time of detecting the tag.

We translate raw RFID data generated in supply chain
management into a set of stay records that do not have
duplicates. A stay record has the form (TagID, Loc, Start
Time, End Time),where TagID and Loc are the same as
above.

 M. P. Ravikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4205-4209

4206

 Start Time is the time when the tag enters the location.
End Time is the time when the tag leaves the location.
From the stay records of a tag, we can construct the trace

record of the tag in the form of

:ܦܫ݃ܽܶ ,1ሾܵ1ܮ 1ሿܧ ՜ ڮ ՜ ,ሾܵ݊݊ܮ ሿ݊ܧ
 where L1. . .Ln are the locations where the tag is

detected, Si is Start Time at the location Li, Ei is End Time
at the location Li, and Li[Si;Ei] is ordered by Si. We use a
set of trace records instead of raw RFID data in our systems.

Fig. 3 Raw Data

Fig. 4 Trace Records

IX. . QUERIES TEMPLATES FOR OBJECT TRANSITION.
 The tracking query finds the movement history for the

given tag. The path oriented query is classified into the path
oriented retrieval query and the path oriented aggregate
query. The path oriented retrieval query finds tags that
satisfy given conditions (including a path condition) and the
path oriented aggregate query computes the aggregate value
for tags that satisfy given conditions (including a path
condition).

Following Figure shows the formal definition for query
templates in supply chain management.

Fig. 5 Query Templates for Tracking Queries and Path Oriented

Queries

Semantics Query

Find the movement history for the tag
whose identifier is XYZ(Tracking
Query)

TagID=XYZ

Find the tags that go through
locationL1—L2 (Path Oriented Query)

<//L1//..L2>

Find the tags that go through locations
L1—L2 where the duration at L2 is
<T(Path Oriented Retrieval Query)

<//L1[(End Time-
Start Time)
<T]//...L2>

Find the average duration time at L2 for
tags that go from L2 directly to L2(Path
Oriented Aggregation Query)

<avg(L2.EndTime-
L2.StartTime),
//L1//L2>

Find the minimum start time at L2 for
laptops that go from L1 to L2

(Path Oriented Aggregation Query)

<min(L2.Start
Time),//L1/L2,
Product name
=”laptop”.

Fig. 6 Examples for Tracking Queries and Path Oriented Queries

X. ARCHITECTURE

Following figure shows the architecture to store RFID data,
and process tracking queries and path oriented queries in
supply chain management. The central server receives raw
RFID data from various regions whose format is (TagID;
Loc; Time). The raw RFID data is transformed into trace
records after sorting the RFID data by the tag identifier and
the time (i.e., TagID : Loc1[S1;E1]- - > Locn [Sn;En]). The
path information in the trace records is stored by using
Element List Encoding Number and Order Encoding
Number and the time information in the trace records is
stored by using Region Number. Since we use prime
numbers instead of location names, the (Location, Prime
Number) list is kept in memory as a hash structure. Based
on the above encoding schemes, we store trace records by
using the relational schema (PATH TABLE, TAG TABLE,
and TIME TABLE). If a user requests a tracking query, a
path oriented retrieval query, or a path oriented aggregate
query, Query Translator translates it into an SQL query.
Then, the SQL query is processed by an RDBMS and the

result is sent to the user.

Fig. 7 Architecture to store RFID data, and process tracking queries

and path oriented queries in supply chain management.

(tag1,A,2),(tag4,A,2),(tag2,A,2),(tag3,A,2),(tag1,A,3),
(tag2,A,3),(tag4,A,3),(tag3,A,3),(tag3,B,5),(tag1,B,5),
(tag2,B,5),(tag4,B,5),(tag1,B,6),(tag4,B,6),(tag3,B,7),
(tag1,B,7),(tag2,B,7),(tag4,B,7),(tag2,C,8),(tag1,C,8),
(tag3,C,8),(tag3,C,9),(tag1,C,9),(tag2,C,9),(tag4,C,13),
(tag4,C,14),(tag4,C,16)

Tag1:A[2,3]->B[5,7]->C[8.9]
Tag2:A[2,3]->B[5,7]->C[8,9]
Tag3:A[2,3]->B[5,7]->C[8,9]
Tag4:A[2,3]->B[5,7]->C[13,16]

[1] Tracking Query=<TagID=ID>
[2]Path Oriented Retrieval Query =<Path Condition , Info
 Condition>
[3]Path Oriented Aggregate Query = <Aggregate Function,
 Path Condition, Info Condition>
Path Condition ՜ (Step)*
Step ՜ Loc[Time Condition] | //Loc[Time Condition]
Aggregate Function ՜count()| sum(Time Selection) | avg
 (Time Selection) | max(Time
Selection)
 | min (Time Selection)
Time Selection ՜Loc Start Time -Loc End Time |
 Loc End Time-Loc Start Time

*Info Table has the information for the tags such as product
name, manufacturer, and price.
** Time Condition is the predicate for start and end time.
***Loc is the location name of a detection region.

 M. P. Ravikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4205-4209

4207

XI. RESULTS
In this study, we develop a movement graph model as a

compact representation of RFID data sets. Since
spatiotemporal as well as item information can be
associated with the objects in such a model, the movement
graph can be huge, complex, and multidimensional in
nature. We show that such a graph can be better organized
around gateway nodes, which serve as bridges connecting
different regions of the movement graph.

Fig. 8 Generate a Graph

Fig. 9 Stay Table.

Fig.10 Graph Matrix Generation

Fig. 11 Find Gateways

RFID readers generate massive datasets, so data must be
compressed by eliminating redundancy. Generate a
movement graph with n locations and n gateways (items
that go from a single initial location to a many ending
location and that occur within a certain time interval).we
propose an approach that will help in extracting and
identifying data patterns at different abstraction levels. In
this, the experimental results show how identification of
gateways helps user to optimize the query with minimum
cost. These results give the information how variation of
time takes place when data flows with gateways and
without gateways.

Fig. 12 Clearly Shows the Efficiency with Gateways and without

Gateways

XII. CONCLUSION
 Proposed model captures the essential semantics of
supply chain application as well as many other RFID
applications that explore object movements of similar
nature. It provides a clean and concise representation of
large RFID data sets. Moreover, it sets up a solid
foundation for modelling RFID data and facilitates efficient
and effective RFID data compression, data cleaning,
multidimensional data aggregation, query processing, and
data mining.

 M. P. Ravikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4205-4209

4208

REFERENCES
[1] Y. Bai, F. Wang, P. Liu, C. Zaniolo, and S. Liu, “RFID DataProcessing

with a Data Stream Query Language,” Proc. 2007 Int’lConf. Data
Eng. (ICDE ’07), pp. 1184-1193, Apr. 2007.

[2] S.R. Jeffery, M. Garofalakis, and M.J. Franklin, “Adaptive Cleaning
for RFID Data Streams,” Proc. 2006 Int’l Conf. Very Large

[3] C. Lee and C. Chung, “Efficient Storage Scheme and Query Processing
for Supply Chain Management Using RFID,” Proc.2008 ACM
Special Interest Group on Management of Data Int’l Conf.
Management of Data (SIGMOD ’08), pp. 291-302, June 2008.

[4] H. Gonzalez, J. Han, X. Li, and D. Klabjan, “Warehousing and
Analysis of Massive RFID Data Sets,” Proc. 2006 Int’l Conf. Data
Eng. (ICDE ’06), Apr. 2006.

[5] S. Agarwal, R. Agrawal, P.M. Deshpande, A. Gupta, J.F. Naughton, R.
Ramakrishnan, and S. Sarawagi, “On the Computation of

Multidimensional Aggregates,” Proc. 1996 Int’l Conf. Very Large
Data Bases (VLDB ’96), pp. 506-521, Sept. 1996.

[6] Q. Chen, Z. Li, and H. Liu, “Optimizing Complex Event Processing
over RFID Data Streams,” Proc. 2008 Int’l Conf. Data Eng.
(ICDE ’08), pp. 1442-1444, Apr. 2008.

[7] C. Floerkemeier and M. Lampe, “Issues with RFID Usage in
Ubiquitous Computing Applications,” Pervasive computing
(PERVASIVE) Lecture Notes in Compute Science, Am. Math.
Soc., 2006.

[8] H. Gonzalez, J. Han, and X. Li, “Flowcube: Constructuing RFID
Flowcubes for Multi-Dimensional Analysis of Commodity Flows,”
Proc. 2006 Int’l Conf. Very Large Data Bases (VLDB ’06), Sept.
2006.

[9] R.K. Chung, Spectral Graph Theory, vol. 92. Am. Math. Soc. 1997.
[10] EPCIS standard v. 1.0.1, Standard, EPCglobal,

http://www.epcglobalinc.org/standards/epcis, 2008.

 M. P. Ravikanth et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4205-4209

4209

